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0 Introduction

The aim of this paper is to relate initial algebra semantics and final coalgebra semantics.
It is shown how these two approaches to the semantics of programming languages are each
others dual, and some conditions are given under which they coincide. More precisely,
it is shown how to derive initial semantics from final semantics, using the initiality and
finality to ensure their equality. Moreover, many facts about congruences (on algebras)
and (generalized) bisimulations (on coalgebras) are shown to be dual as well.

Initial algebra semantics is a well-established technique in the study of programming
languages, while final coalgebra semantics is a more recent one. In initial semantics, a
meaning is assigned to programs in a compositional manner. In final semantics, the atten-
tion is rather focussed on describing the observational behavior of programs; once it has
been decided what should be considered as observable, programs which are observationally
equivalent are identified.

Initial semantics exploits the fact that the collection of terms of a given signature T
forms an initial T-algebra. The semantics is determined by fixing another S-algebra as
a semantic domain, in which the function symbols of T are interpreted. The semantic
mapping of the terms into this semantic domain is canonically given by initiality, and is
compositional with respect to the signature.

Likewise, final semantics exploits the fact that, given a notion of observation, say
G, the elements of a final G-coalgebra are equal if and only if they are observationally
equivalent (w.r.t. G). Once a (G-)coalgebra structure is given to the terms of the lan-
guage, the semantic mapping is again canonically given, but now by finality instead of
initiality. This semantic mapping has the property of identifying terms if and only if they
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are observationally equivalent. (The interest of observational equivalences for program-
ming languages arose in connection with the study of concurrent and non-deterministic
languages, where—in contrast with sequential (imperative) languages with their clear
input/output behavior—various kinds of observations are meaningful.)

Let us give some further explanation. In initial semantics, an endofunctor £* is asso-
ciated with a signature T; then a S-algebra is simply a set X and a function

a:BY(X) — X.

More generally, for any endofunctor F on an arbitrary category, an F-algebra is an object
C and an arrow

a:F(C)— C.
Dually, a coalgebra of an endofunctor G is an object C and an arrow
B:C— G(C).

Certain endofunctors are suitable for formalizing observations. In this paper, the
following two functors are used. The (covariant) endofunctor B(Ax -), which assigns to
a set S the collection of all finite subsets of A x §, is used to describe strong bisimulation
equivalence. Its coalgebras are in one-to-one correspondence with (finitely branching)
labelled transition systems, by viewing a transition relation Ron S x A x § (foraset S
of states and a set A of labels) as a (non-deterministic) function

B:S — PyAxS).

Secondly, the functor 1 +A4 @ -, defined on the category of (join) semi-lattices is used
to describe trace equivalence. (Here A ®" - denotes, for a given set A, the right tensor
product, which will be introduced here.) The coalgebras of this functor correspond to
a proper subclass of transition systems called linear, because they have a semi-lattice
structure.

We shall formulate some general conditions under which an initial semantics can be
derived from a final one. A crucial step in the construction is reminiscent of a technique
used (although for apparently different reasons) in the semantics of the lambda calculus:
the extension of the collection of terms (over a given signature) with the elements of the
semantic domain, regarded as constants. Another important step will be made under
the assumption that bisimulation is a congruence. As pointed out in [GV92], this can be
ensured by considering only transition systems that are defined by means of a transition
system specification ([Plo81b]), in which the axioms and rules are of a restricted syntactic
format.

First an initial semantics for strong bisimulation is derived (using the functor B(Ax-)).
Next the construction of an initial semantics from final semantics is formulated more gen-
erally for arbitrary categories and functors (the reverse direction is briefly discussed as
well). Then it is applied to obtain semantics for trace equivalence (using the functor
1+A48-).

The initial semantics, which is canonically constructed here, turns out to be—for cer-
tain specific signatures—the same as already existing denotational models. The initial
semantics of the example in Section 3.6 coincides with (a variant of) a compositional model
given in [BM88]. Similarly, the linear semantics of Section 5 is essentially the composi-
tional model from [HP79]. In both papers, observational and compositional semantics
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are defined independently, and their equivalence is proved next using some fixed-point
argument (in metric and ordered spaces, respectively). Interestingly, such fixed-point
arguments are not needed here, but rather the uniqueness of initial and final arrows is
exploited.

In Sections 1 and 2, the definitions and properties needed for the above construction
are given in all detail. They are of some interest for their own sake, since the definitions
and facts about coalgebras will simply be dual versions of similar definitions and facts
about algebras. Let us mention the following examples. The definitions of congruence
and (generalized) bisimulation are dual. Homomorphisms of algebras are precisely those
functions whose graph is a congruence; dually, homomorphisms of coalgebras are those
functions whose graph is a bisimulation. The kernel of a homomorphism of algebras
is a congruence, and the kernel of a homomorphism of coalgebras (for most functors)
is a bisimulation. As a last example, the equality relation on an initial algebra is the
smallest congruence, yielding an induction principle. Dually, the equality relation on a
final coalgebra is the greatest bisimulation, which can be seen as a coinduction principle.

Thus, since the world of algebras and in particular that of T-algebras has been inten-
sively studied (think of universal algebra), these (and other) correspondences used in this
paper pave the way for a more systematic exploitation of results about algebras in the
study of coalgebras.

(Note that some care is needed, however. In particular, the duality between algebras
and coalgebras involves the reversal of the arrow between an object and its image under
the functor application. At the same time, the direction of the homomorphisms between
algebras and coalgebras is the same (with respect to the underlying category).)

Further References and Related Work

Given its widespread use, references to initial semantics are probably superfluous. Let
us just mention [GTW78] as an early reference, and [MG85] for an overview. For final
semantics, instead, let us try to give a more detailed account.

One of the main features of final semantics is that it is independent of the specific way
in which the semantic domains are constructed: It is defined in terms of their ‘universal’
properties only. Traditionally, semantic domains have been constructed in a recursive
manner by using sets with some additional structure, like partial orders or metric spaces.
(See, e.g., [SP82, Ken87, AR89). See also [ArM82] for an early reference on final coalge-
bras of functors on sets.) A construction of semantic domains in terms of sets with no
additional structure occurs in [Acz88]; however, a non-standard set theory is used in which
sets may be non-well-founded. In the same book, the final coalgebra of a powerset functor
appears as a model of this theory. Furthermore it is used for giving both an observational
and a compositional semantics for the language CCS. (The observational semantics is
with respect to strong bisimulation; for the compositional semantics, an adhoc method
is used rather than a general methodology.) Later, in [AM89], more attention is given
to final coalgebras in the category of (ordinary) sets. Moreover, the notion of (general-
ized) bisimulation of a functor is introduced there. In [Bar93], the results of [AMB89] are
expanded. (The existence of a final coalgebra of the functor P:(Ax-) is proved in the
present paper using a theorem from [Bar93].)

In our previous paper [RT93], a first step is made towards a generalization of the above
notions to a, say universal, semantics based on final coalgebras. Properties of arbitrary
categories of coalgebras are studied there, and the above mentioned approaches to the
construction of semantic domains are put into a unifying framework.
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Recently, in [TJ93], it has been shown how to express trace equivalence and applicative
bisimulation (in the sense of [Abr90]) in terms of coalgebras. The former is the same
as the final semantics for trace equivalence used in the present paper. The latter is a
reformulation in terms of final semantics of Abramsky’s observational semantics for his
lazy lambda calculus; it is given in an ‘order-enriched’ setting. (See [Fio93, Rut93, Pit92]
for related work in order-enriched categories.)

The idea of deriving compositional models from observational semantics based on
transition system specifications is already described in [DG87] and [Bad87]. A more
general construction is given in [Rut92], which is the starting point for the present paper;
here we abstract from the specific observational equivalence used there (bisimulation)
by means of final semantics. Moreover, we exploit the generality of this formulation for
applying the same method also to trace equivalence.

How to Read this Paper

Sections and remarks marked by three stars, as in Jmportant***, are intended for second
reading.

Sections 1, 2 and 3—with the exception of remarks and subsections marked by three
stars—do not presuppose any knowledge of category theory. Everything is formulated in
the category of sets and functions (at the price of omitting certain generalizations, which
will be described elsewhere), and the exposition is, at many places, very concrete and
detailed. Instead, Sections 4 and 5 use several constructions and results from category
theory.

Readers with some categorical background might want to read the first two sections
more quickly. They are also invited to make the generalizations that are left implicit there.
Section 2.3 might be of particular interest since it, together with Section 2.4, provides
a bridge between the construction of final coalgebras as given in [AMS89] and the one
in [Bar93]. Section 5 might be a good example of the generality of the final semantics
approach.

1 Algebras

The well-known notion of algebra of an (endo-)functor is used to describe the familiar
concept of T-algebras. There are two main reasons for choosing this somewhat abstract
way of presentation here. Firstly, it will allow for a transparent and precise formulation
and proof of our main constructions (in Sections 3 and 5). Secondly, the notion of algebra
is dual to that of coalgebra, which—as we shall argue—is very suitable for describing
transition systems and their properties. Also the notions of congruence and bisimulation
will turn out to be each others dual. As a consequence, certain facts and proofs in the
world of coalgebras are simply the dual versions of their counterparts in the dual world of
algebras. Since in particular ¥-algebras are studied in a renowned field of research such as
universal algebra—and in fact, the observations in this section will come as no surprise to
anyone with some basic knowledge thereof—the exploitation in the present paper of the
duality between algebras and coalgebras can furthermore be seen as a first step towards
a more systematic exploitation of results about algebras in the world of coalgebras.

We shall work with the category Set consisting of sets and functions, and shall consider
functors from this category to itself. (One might already from the beginning want to keep
in mind, that almost all what follows equally well applies to arbitrary categories and
functors. In Section 5, a different category will be considered.)
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Let F : Set — Set be a functor. Such a functor is called an endofunctor on Set. It
maps sets to sets, and functions between sets to functions between their images, in such
a way that composition of functions is preserved and identity functions are mapped to
identity functions.

Definition 1.1 An F-algebra is a pair (4, a), consisting of a set 4 and a function « :
F(A) = A. A homomorphism f : (A, a) — (B,8) between F-algebras (4, ) and (B,B)
is a function f : 4 — B satisfying f o a = S0 F(f):

r(a) 2 pep)

e * Iéj
A—— B
f

(Such an f will also be called an F-homomorphism.) Composition of two homomor-
phisms f and g between F-algebras is defined by g o f, the function composition of f

and g, and yields again a homomorphism. The collection SetF of F-algebras and algebra
homomorphisms constitutes a category. ]

An initial object in a category is an object A such that for any other object B there
exists a unique arrow from A to B. Thus an F-algebra (A4, ) is initial if for any other
F-algebra (B, ) there exists a unigue homomorphism 7 : (A,a) = (B,B)

The following result is classical.

Theorem 1.2 Initial F-algebras (A,a) are fized points of F; that is, @ : F(A) — A is
an isomorphism.

Proof: Let (4,a) be an initial F-algebra. Then also (F(F(A)), F(c)) is an F-algebra
and by initiality of (A4, a), there exists a homomorphism 7 : (4, a) — (F(F(A)), F())

Pa) 28 p(pay)

?

a * F(a)

A F(4)

Since the following diagram commutes trivially,

p(r(ay) 2. pay

F(a) * a

it follows that @07 : (4,a) — (A4,a) is a homomorphism. Because also 1, is a ho-
momorphism from (A4, a) to itself, it follows by the initiality of (4,) that 14 = a0 T.
Moreover,
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Toa = F(a)o F(I)
= F(a o] I)
= F(1,)
= lpy,
showing that a is an isomorphism. o

If one sees categories and functors as generalizations of preordered sets and monotone
functions, algebras of a functor correspond to pre-fixed points. Initial algebras correspond
to least fixed points.

Next the notion of a congruence is introduced (cf. [Man76)).

Definition 1.8 An F-congruence between two F'-algebras (4, a) and (B, 8) is a relation
R on A x B such that it can be extended to a subalgebra of the product of (4, a) and
(B,B). That is, R is an F-algebra (R,7), with v : F(R) — R as given below, such that
its projections 7, : R — A and 7, : R — B (defined by m,((a,b)) = a and m2((a,b)) = b,
for (a,b) € A x B) are homomorphisms of F-algebras:

pa) £ pgy Flra) F(B)

a * v * B

A R

™ T2

B

Note that there is at most one such function 7 making the diagram above commute: It is
determined by the requirement that for any z € F(R)

(@) = (a0 F(m)(z),8 0 F(my)(z)).

bl

0

Note that the above definition of congruence does not require R to be an equivalence,
as opposed to the standard definition of a congruence on a Z-algebra (see Example 1.4).

1.1 X-Algebras

In this section, we shall first define, for a given signature L, afunctor £* on Set. Then the
definitions (of algebra and congruence) given above for arbitrary endofunctors on Set will
be applied to T*. We shall see that the resulting $*-algebras and Z*-homomorphisms are
precisely the familiar T-algebras and the homomorphisms between L-algebras. Further,
a congruence on a I-algebra will turn out to be an instance of the (slightly more general)
notion of £*-congruence. Finally, the usual X-algebra of (closed) terms is shown to be an
initial £*-algebra.

Let (Z,7) be a single-sorted signature (ranked alphabet), consisting of a set ¥ of
function symbols, and a ranking function r : & — N, which assigns to each function
symbol f € ¥ a natural number 7(f), called the rank (or arity) of f. The functor
Z*: Set — Set is a functor defined as follows. For a set X,

X)) =[x,
feT



537

where [] denotes the disjoint sum (coproduct), X° is a singleton set (final object) 1 = {*}
and

X*={(21,..,2) | 2 €X,...,z € X},
if k > 0. (Note that here and in the sequel, the symbol = is used as “defining equality”,
meaning that the left side is being defined, whereas the right side is assumed to be already
known.) Equivalently,

2(X) = UL} x X0,

fex

(Elements (f, (21, ..., 2.(s))) of { f}x X~(*) will be denoted by f(z1,...,Z.s)).) A function
h:X — Y is mapped by I* to the function Z*(h) : ZY(X) — %*(Y), which is defined,
for any f(z1,...,2.(5)) € B*(X), by

ZUR)(f(z1s- 2 20(n) = flR(21), .. h(=os)).

Consider a £*-algebra (X, ). Since the function « : E*(X) — X has a (disjoint) sum
as domain, the restriction of a to each of the components of this sum determines a family
of functions

{fx: XD x|fexwy,
by putting, for any f € T and (z,,.. 1 Z.(p)) € X7,
Fx((zhs2en)) = a(fler, .. zay).

(Note that the argument of fy is an element of X7, whereas the argument of « is an
element of {f} x X7(#)) Conversely, reading this definition right to left shows that any
such family determines a function « from 2*(X) to X. Thus the S*-algebras are precisely
the usual T-algebras.

Let (X, a) and (Y,) be two T*-algebras. A function h:X — Y is a homomorphism
of X*-algebras:
2(x) 24 5y

o * g

X—Y
h

if and only if, for any f € ¥ and (Z1y -y 2ps)) € X7,
h(fx (2150 200)) = Fr((h(21),- .., Blzopy))-
This follows from the observation that in the following sequence of equations,
h(fx (@ zn)) = Ba(fler,. ., 2(p)
BE(R)(F (2, -, 2e(ry)))
B(f(h(z1),. .., (1))
Fr((h(z1), - h(ze(),
the second equality holds if and only if h is a I*-homomorphism (and the other equalities

hold always). Since a homomorphism of Y-algebras is usually defined as a function A
satisfying
h(fx((z1,... ’zr(!)») = fr((h(21),... ah(zr(f)»)’

it follows that the notions of Z*-homomorphism and I-homomorphism coincide.

I

Il
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1.1.1 X*-Congruences

The notion of X*-congruence generalizes the standard notion of a congruence: Let (X, a)
be a T*-algebra, and let R C X x X be a relation on X. It is a simple exercise to verify
that R can be extended (in a unique way) to a £*-congruence (R,7):

z* *
Et(X) (7['1) Et(R) (71'2) Et(X)
a * v * a
X R X
m™ T2
if and only if R is a congruence relation in the traditional sense; that is, for all f € ¥ and
sequences (z1,...,Z,(s) and (z!,... ,z:(f)) in X9,

if (zi,2) € R, forie {1,...,7(f)},
then (fx((z:l,...,:c,.(f))),fx((mi,...,a:,'_(f)))) € R.

Example 1.4 Consider the signature {s,0}, consisting of a unary function symbol s (for
successor) and a constant 0. Let N = {0,1,2,.. .} be the set of natural numbers, and let
¢:N+1- N be defined by ¢(r) =n + 1, for n € N and #(*) = 0. Then (N, ¢)is an
example of a {s,0}*-algebra.

As an example of a congruence relation on N , consider the set

E={(r,m)€ Nx N| n+miseven },

together with the function y: E+1 — E mapping (n,m)in E to (n + 1,m + 1), again
in E, and = to (0,0).

The following example shows that a congruence need not always be an equivalence
relation. Let (X, a) be the {s,0}*-algebra consisting of a three element set X = {z,y, 2}
and the function a : (X + 1) — X that is the identity on X and maps * to z. Next
consider the relation R = {(z,z),(z,y),(y,2)} on X, which forms a {s,0}*-congruence
on (X,a) together with the function - : (R +1) — R, which is defined as the identity
on R and maps * to (z,z). Now R is an example of a congruence relation that is neither
reflexive, nor symmetric, nor transitive. a

Definition 1.5 The kernel of a function b : X — ¥ is the set
Kn={(z,2') € X x X | h(z) = h(")}.

The graph Gy of h is defined as
Gh={(z,9) € X XY | h(z) = y}.

The next two propositions state that the kernel and the graph of a £*-homomorphism
are congruences. In fact they hold for arbitrary functors. As we shall see in Section 2,
they have a dual counterpart in the world of coalgebras, where the kernel and the graph
of a homomorphism of coalgebras is a bisimulation (Propositions 2.7 and 2.8).
Proposition 1.8 Let (X,a) and (Y,8) be two T*-algebras, and let h : X — Y be a
Sfunction. Ifh is a Z*-homomorphism then its kernel Ky is a ¥*-congruence. i
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A proof of this proposition, and an example showing that its converse is false, are easily
found. For the latter, consider the algebra (IV,¢) of the natural numbers (see Example
1.4), and the function k : N — N that takes n € IV to n+1: the kernel of & is the identity
relation on N, which is always a congruence, but k is not a homomorphism from (N,9)
to itself.

In this respect, graphs are better behaved.

Proposition 1.7 A functionh: X - Y is a homomorphism of £*-algebras (X,a) and
(Y,8) if and only if its graph G4 is a L*-congruence (Gh,v) between (X,a) and (Y, ).

Proof: Let (X,a) and (Y,4) be two L*-algebras, and let A : X — Y be a function.
Define a function v on £*(G}), for any (21, h(21)), 5 (2o (s, B0 (5)) im Z*(Gr), by

(f((z1, h(z1)), ..., (zr(f)’ h(zr(f))») =
(a(f(zl) ey z'(f)))v ﬂ(f(h(zl), cey h(m"(f)»))
Note that the righthand side of the above equation is an element of G, if and only if
h(a(f(:l:1, ceey z"(f)))) = :B(f(h(zl)> L) h(ﬂ:,(ﬁ)))-
Since the latter term is equal to
BE(R)(f (1, - 2ns)),
it follows that (Gh,7v) is a congruence if and only if h is a £*-homomorphism: hoa =
BoZ*(h). O
1.1.2 Initial Semantics

An ingtial £*-algebra (T, ) is given by the usual free construction of terms over ¥: the
set T can be constructed as the union of a sequence of sets (T,)n given by Ty = () and for
n > 0,

Tors = {f(ts,-- s tos)) | f €D and i € T for i = 1,...,r(f)}.

(If 7(f) = 0 then f(t1,...,to) should be read as f. This implies that the set T),, for
any n contains all constants. As a consequence, it can be proved inductively that T,
is contained in T,,;.) The function ¢ : Z*(T) — T is defined, for any f € 3 and
Flen o ten) € {f} x T7U), by

¢(f<t1a' . ',tr(f))) = f(tla' .. :tr(f))-

Note that ¢ is indeed an isomorphism. Similarly, the set Tx of terms over ¥ with variables
in a given set X, is obtained as the union of a sequence (Va)n with Vg = 0 and, for n > 0,

Varr = X U{f(ts,....t.s)) | FES and t; € V,, for i = 1L...,7(H)}.
The set Ty is an initial algebra of the functor L% : Set — Set defined, on sets S, by
Zx(8) = X + 2*(9).

Now consider an arbitrary £*-algebra (X, @). By the initiality of (T, ¢) there exists a
unique homomorphism 7 : (T, ¢) — (X, a),
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21 28 5
e * o
T T X,

called the initial semantics for X. By the commutativity of the diagram above, it is
compositional, satisfying for all f € X and (t1y--. 2ta(s)) in T,

I(f(th v ,tf(f))) = fX(I(t1)¢ cee aI(tr(f)))'

Ezample 1.4, continued: The construction of an initial {s,0}*-algebra yields the set of
terms

I'={x, 3(*)’5(3(*))’ S

together with a function . from Z*(I) to I. Clearly, this initial algebra ([, ¢) is isomorphic
to (N, ), which therefore is initial as well. (In general, many initial algebras may exist
but they are all isomorphic.)

For a simple example of initial semantics, consider the {s,0}*-algebra (4, ) given by
A = {o,e} (for odd and even), and @ : A+1 — A mapping o, e, and x to e, o, and e,
respectively. The initial semantics 7: N — A4 then maps even natural numbers to e and
odd natural numbers to o. o

1.2 Smallest Congruences and Induction***

Let F : Set — Set be a functor. Let (A, @) be an initial F-algebra and let (R,7) be
an F-congruence on (4, a), with projections m, 7, : (R,7) — (A,a). By the initiality
of (4, a) there exists a (unique) homomorphism 1 : (4,a) = (R,v). Again by initiality,
M 01 =14 =m 04 This implies, for any a € A that i(a) = (a,a) is in R. Thus the
equality relation =4 on 4 is contained in R. Since =, itself is an F-congruence on (4,a),
we have proved the following theorem. It is dual to Theorem 2.4, which states that the
equality relation =4 on a final F'-coalgebra (A, a) is the greatest F-bisimulation on (A, a).

Theorem 1.8 For an instial F-algebra (4, a), the equality relation =4 on A is the small-
est F-congruence,

=a=[{RCAXA|Risan F-congruence on (4,q) }.

This theorem can be interpreted as a principle of induction, as is illustrated by the
following.

Ezxample 1.4, continued: Applying Theorem 1.8 to the initial {s,0}*-algebra N, the nat-
ural numbers, yields: for every R C N x N such that (0,0) € R and such that, for all
(m,n) € N x N, if {(m,n) € R then (m +1,n +1) € R, we have =yC R. It is easy to
see that this is equivalent to the well-known principle of mathematical induction: for all
PCN,

ifOEPand(VnEN,nEP:»n-{-lEP)thenP:N.
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2 Coalgebras

A coalgebra of a functor is defined as the dual of an algebra. Labelled transition systems
correspond to the coalgebras of a certain functor (because of a well-known bijection be-
tween relations and non-deterministic functions). Similarly, bisimulations are coalgebras
([AMB89]). (See also [Ken87] for an early reference.) In [RT93], these ideas are further
developed and systematically employed in giving semantics (called final semantics since
it is based on the notion of final coalgebra) to (generalized) transition systems. In [TJ93],
this framework is applied to linear semantics (which will be treated in Section 5) and to
the lazy lambda calculus.

In this section, the main definitions and theorems of [RT93] are recalled, now for-
mulated for the category Set. (But again, most of it applies to arbitrary categories.)
Furthermore, the category of coalgebras of one particular functor on sets is investigated
in great detail. All of the definitions and theorems, formulated for arbitrary functors on
Set, are next instantiated for this functor, yielding familiar notions. In particular, the
coalgebras of this functor exactly correspond to the standard labelled transition systems.
Many properties of such systems—some new, some already known—are formulated and
proved in an elegant way, by using some basic properties of coalgebras and coalgebra
homomorphisms.

Consider a functor F': Set — Set.

Definition 2.1 An F-coalgebra is a pair (4, a), consisting of a set A and a function
a:A— F(A).

A homomorphism of F-coalgebras f : (A,a) — (B,B) (or F-homomorphism) is a
function f: A— B satisfying F(f)oa= 8o f:

a1

a * 3

FA) 57 FOB)

Composition of two homomorphisms f and g between between F-coalgebras is defined
by g o f, and yields again a homomorphism. The collection Setp of F-coalgebras and
coalgebra homomorphisms constitutes a category. ]

Definition 2.2 An F-bisimulation between two F-coalgebras (A4, a) and (B, ) is a rela-
tion B C A x B that can be extended to an F-coalgebra (R,v), for some v: R — F(R),
such that its projections 7; : R — Aand 7, : R — B are homomorphisms of F-coalgebras:

3! T2

A R B
[ * v * 3
F(4) F(B)

F(m) F(R) F(r,)

Note that in general there may be more than one such function «. |
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An F-coalgebra (A, ) is final if for any other F-coalgebra (B, ) there exists a unigue
homomorphism f : (B,B8) — (A,a). It is weakly final if there exists at least one such
homomorphism.

2.1 Basic Facts
The following theorem is the dual of Theorem 1.2.

Theorem 2.3 Final F-coalgebras (A, ) are fized points of F; that is, a: A — F(A) s
an isomorphism. o

Final F-coalgebras are of particular interest because of the following property. For
any F-coalgebra (A, a), let ~4 be defined as the union of its F-bisimulations:

~4=J{RC A x A| Ris an F-bisimulation on (4,a)}.

Two elements a and a’ in 4 with a ~4 a’ are called (F-)bisimilar. (For most functors, ~4
Is itself a bisimulation relation. A sufficient condition is that F weakly preserves kernels.
Cf. Remark 2.5 and Section 2.3.) The following theorem (from [RT93]) is easily derived
from a similar result in [AMS89].

Theorem 2.4 A final F-coalgebra (A, ) is strongly extensional: For all a,a’ € 4,
ifa~4a thena=d'

Since the equality relation =4 on any F-coalgebra (A,a) can be readily seen to be a
bisimulation, this implies =4 =~ 4; that 1s,

=4=|J{R C A x A| R is an F-bisimulation on (4,a)}.

Proof: Immediate from the fact that the two projections my, s : (R,7) — (4, ), of any
F-bisimulation (R,v) on (4, a), are equal by the finality of (4, a). O

Note that the above theorem is dual to Theorem 1.8. It can be seen as a proof
principle—called the principle of coinduction: in order to prove the equality of two ele-
ments, it suffices to establish the existence of a bisimulation between them.

Recall that the kernel of a homomorphism between L*-algebras is a congruence (Propo-
sition 1.6). To prove the dual fact that the kernel of a homomorphism of F-coalgebras is
an F-bisimulation, a condition on the functor F is needed. A sufficient condition is that F
weakly preserves kernels. All familiar functors, which are defined using constants, prod-
ucts, sums and powerset constructions, satisfy this condition. In particular, all functors
used in this paper do.

Remark 2.5 *** The functor F weakly preserves kernels if Kp(sy can be injectively
mapped into F(Ky). If Kpyy = F(Ky) then F is said to preserve kernels. It is not
difficult to show that the function ~ defined for (a,a’) € Ky by 7(a,a') = (afa), a(a’)),
maps into Kp(sy. If F' weakly preserves kernels this actually defines a function into F(Ky),
and (Ky,7) is a bisimulation on (A,a). A more general, categorical fact underlying this
observation is that for endofunctors F (on a category C) that preserve pullbacks, the for-
getful functor from Cr to C creates pullbacks. O

The fact that the kernel of an F-coalgebra homomorphism is a bisimulation (for fune-
tors F that weakly preserve kernels), is used to prove the following.

]
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Theorem 2.6 ([RT93]) Let F weakly preserve kernels. Let (4,a) be a final F-coalgebra
and (B, B) be any F-coalgebra. Let F be the unique homomorphism from (B, ) to (4,a).
For all b,b' € B,

b ~p b if and only if F(b) = F(b').

Proof: The implication from left to right follows from the fact that for an F-bisimulation
(R,~) on (B,B), Fomy,Foms: (R,7) — (A,a) both are homomorphisms to the final F.
coalgebra (A, ). The converse is immediate from the assumption that F weakly preserves
kernels, by which K z is an F-bisimulation on (B, 8). D

2.2 Labelled Transition Systems

In this section, the above definitions and theorems will be applied to one particular functor.
We shall see that its coalgebras correspond to labelled transition systems, and that the
definition of F-bisimulation yields the familiar notion of strong bisimulation.

Let A be a given (possibly infinite) set. Let P(A x -) : Set — Set be the functor
defined, on sets S, by

P(AxS)={V C A x S}

P(A x -) maps a function f : § — T to the function P(Axf) : P(AxS) — P(AxT),
which is defined, for any V € P(4xS), by

P(Axf)(V) = {{a,f(s)) € AxT | {as) € V}.

The coalgebras of this functor are in one-to-one correspondence with labelled transition
systems over A: that is, triples (S, A, —) consisting of a set S of states, the set A of labels,
and a transition relation —C Sx Ax S. (As usual, we write s — s’ for (s,a,s') €—.) For
to any P(A x -)-coalgebra (S, ), a labelled transition system (S, 4, —) can be assigned
(one-to-one) by putting, for s,s' € S and a € 4,

s = ¢ & (a,s") € afs).

2.2.1 Bisimulation

The P(A x -)-bisimulations between two P(A x -)-coalgebras (S, ) and (T,8) are pre-
cisely the usual strong bisimulations between transition systems ([Par81, Milg9]): a rela-
tion R C § x T can be extended (not necessarily uniquely) to a P(A x -)-bisimulation

(R,7),

s i R ki T

a * Y * .3
— — P(AXT
P(AXS) PlAxm) P(AxXR) BlAxm) P(AXT)

if and only if R is a strong bisimulation between S and T, seen as transition systems;
that is, for all s € S and ¢t € T with (s,t) € R:

(1) if s = ', for some §' € S,
then t —2- ¢ for some t' € T with (s',t') € R;
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(2) if t = ¢/, for some t' € T,
then s —= s’ for some s’ € § with (s',t') € R.

The implication from left to right follows from the observation that the commuta,tivi.ty of
the left and right squares in the above diagram implies conditions (1) anfi (2), respectively.
For the converse, consider a bisimulation relation R on § x T satisfying clauses (1)
and (2). Asis well known, a bisimulation relation can be turned into a transition system
by defining, for (s,t) and (s',¢') in R,
(5,8) = (s, #)=s - 5" and t 2 ¢'.
This transition system, which has the set R for its set of states, can be turned into a
P(A x -)-bisimulation (R,7) in the canonical way described at the beginning of Section
2.2: define v : R — P(AXR), for (s,t) € R, by
((s,)) = {{a,(s",t)) | (s5,t) == (&', ¢) (and (¢/,¢') € R)}.
It follows from (1) and (2) that (R,v) is a P(A x -)-bisimulation, that is, that m :
(R,¥) = (5,a) and 5 : (R,v) — (T, B) are homomorphisms.
Now that we have seen the correspondence between strong bisimulations and P(4 x -)-
bisimulations, the two notions will be used in what follows interchangeably.
The following two propositions are the duals of Propositions 1.6 and 1.7. They are
formulated for the functor P(A x -) but also hold for arbitrary functors (that weakly
preserve kernels).

Proposition 2.7 Let (S, a) and (T, B) be two P(A x -)-coalgedbras, and let f : S — T be a
function. If f is a P(A x -)-homomorphism then its kernel Ky is a P(A x -)-bisimulation.
[m}

The proof is easy and therefore omitted. Its converse does not hold (and a counter
example is again easily found).

Proposition 2.8 A function f : § — T is a homomorphism of coalgebras from (S, a) to
(T,B) if and only if its graph Gy is a bisimulation.

Proof: First note that the graph Gy is a bisimulation if and only if the following two
conditions are satisfied: for all s € S,

(1) if s = &', for some s' € S, then f(s) -2 f(s;
(2) if f(s) =5 t, for some t € T, then there exists s’ € S with
s — s'and f(s') =t.

Further note that, by definition, the function f is 2 homomorphism if and only if the
following diagram commutes,

S T
a * i)
P(AxS) P(AXT)

P(Axf)
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which is equivalent to the equality of the following two sets, for every s € S:
Bof(s)={(a,t) € AxT| f(s) =5},
P(Axfloa(s) ={(a,f(s)) EAXT|s - '}

(Recall the correspondence between transition relations and coalgebras.) Now the theorem
.follow.s from the observation that conditions (1) and (2) above are equivalent to the
inclusions of P(AXf) o a(s) in Bo f(s), and of Bo f(s) in P(AXF) o a(s), respectively.

0

A function f : § — T satisfying condition (1) is sometimes called a morphism of transition
systems. For a category of labelled transition systems, in which—a variant of—such mor-
phisms are taken as the arrows, see [WN93]. If f satisfies both (1) and (2) it is sometimes
called a saturating morphism ([AD89]). Bisimulations like Gy are called functional.

Remark 2.9 *** Both Proposition 2.8 and Proposition 1.7 could be given simple cate-
gorza.zl proofs by viewing the graph of a function f : § — T as the pullback of f with the
identity function on T. Such proofs could then be easily seen to be each others dual. O

With what above, one can prove that P(A x -)-homomorphisms satisfy yet another
useful property.

Theorem 2.10 Let f: (S,a) — (T,[) be a homomorphism of P(A X -)-coalgebras. For
any bisimulation R C § x S, the set

R = {(f(s), f(s")) € T x T | (s,s') € R}

s a bisimulation on T'. Conversely, for any bisimulation R C T x T, the set

Ry ={(s,s") € S x S| (f(s), f(s")) € R}

is a bisimulation on S. Thus P(A X -)-homomorphisms are bisimulation preserving and
reflecting.

Proof: The (relational) inverse of a bisimulation and the (relational) composition of two
bisimulations yields again a bisimulation. Then the theorem follows from

Rf = (Gf)_l oRo G,c and Rf = Gf oRo (Gf)_l
(where the composition of relations should be read from left to right). a

Although it has not been stated, a similar property holds for congruences and algebras.

2.2.2 Final Semantics

Clearly, there does not exist a final coalgebra for the functor P(4 x ) : Set — Set:
any final coalgebra is a fixed point, and the functor P(A x -) does not have any fixed
points; for, the assumption that X, for any set X, is isomorphic to P(AxX) leads to a
contradiction, since the cardinality of the latter is (for non-empty A) strictly bigger than
the cardinality of X.

Therefore we shall consider a restriction of the functor P(A x -), for which there does
exist a final coalgebra. It is the functor Py(A X -) : Set — Set, which is defined, on sets
S, by
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Pi(AxS)={V C Ax S|V is finite};

on functions, P;(A x -) is defined as before. The coalgebras of this functor are in one-to-
one correspondence with labelled transition systems (S, 4, —) that are finitely branching:
for all s € S the set {(a,s') € A x S| s =% §'} is finite. Note that all the observations
made in Section 2.2 about labelled transition systems and coalgebras of P(4 x -), also
apply to finitely branching labelled transition systems and coalgebras of Py(4 x -).

In [Bar93], it is shown that there exists a final coalgebra (P,%) for the functor
P#(A x ). The set P—the elements of which will be called processes—can be obtained by
first constructing the collection of all finitely branching ordered (possibly infinitely deep)
trees with labels from 4, and next taking the set of all P;(A x -)-bisimulation equivalence
classes of such trees. (Recall that Py(A x -)-bisimulation coincides with the usual notion
of (strong) bisimulation.) Since the construction of the final coalgebra (P,%) has some
interest of its own, and since it turns out that the original construction in [Bar93] can be
somewhat simplified, we shall describe it in some detail in Section 2.4.

Remark 2.11 *** The family of labelled transition systems (S, A, —) that are image
finite—for alla € A and s € S, the set {s' € § | s - s'} is finite—can be similarly
described as the category of coalgebras of the functor A — Py(-), which maps a set § to
the set of all functions from A to the set of all finite subsets of S. Also this functor, which
occurs for the first time (in a metric setting) in [Bre93], can be shown to have a final
coalgebra in Set. ]

Let (S, @) be any P;(A x -)-coalgebra (that is, finitely branching transition system),
and let 7 : (S,a) — (P,%) be the unique homomorphism given by finality of (P,),
called

Branching Final Semantics:

S§—m P

a * P
Pf(AXS) m Pf(AXP)

By the commutativity of this diagram, for s € S,

F(s) =¢7"({(a, F(s)) € Ax P | (a,s") € a(s)} );
equivalently,

F(s)=¢7"({(a,F(s")) € Ax P |5 -5 s} ).

One can easily verify that the functor Ps(4 x -) preserves kernels: for any function
f:8 =T, the kernel of P¢(Ax f) is equal to P;(AxK;). Hence Theorem 2.6 applies to
F:forall 5s,s' € S,

s ~s &' if and only if F(s) = F(s").

For the implication from right to left it is sufficient that K £ is a bisimulation, which
follows from Proposition 2.7 (rather than deriving this from the fact that Ps(A4 x -) pre-
serves kernels).
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2.3 Quotients of Coalgebras™***

Some basic properties of quotients of coalgebras are discussed, in order to arrive at a
characterization of final semantics in terms of canonical quotients with respect to the
greatest bisimulation. First the functor P;(A X -) is treated, next arbitrary functors.
Much of what follows in this subsection is an expansion of similar results in [AMB8Y],
where coalgebras of endofunctors on a category of classes are discussed.

Let (S, a) be a P¢(A x -)-coalgebra and (R, ) a P;(A x -)-bisimulation on (S, ). For
convenience it is assumed that R is an equivalence relation (if not, the smallest equivalence
containing R has to be taken in the construction below). We define, for any s € 3,

[slR={s"€ S| (s,s') € R} and Sr={[s]r | s € S};

moreover two functions 7p : § — Sk and ap : Sr — Py(AxSg) are defined by 7r(s) =
[s]r and

ar([s]r) = {(a,[s"]r) € 4 x Sg | s’ %+ s" for some s’ € [s]g }.

Note that ap is the unique function from Sg to P;(AxSg) making the right side of the
diagram below commute:

R i 5 i 5n
T2
¥ * 5 * QR
Pf(AXR) M P!(AXS) —_— Pf(AXSR)
Py(Axs) Ps(Axmg)

Applying the above to the greatest bisimulation ~s on S yields the coalgebra (S~, ).
Interestingly, it is strongly extensional: for if R is a bisimulation on S.., then, by Theorem
2.10,

{(s;t) € Sx 5| ([s]~,[t]~) € R }

is a bisimulation on §, implying w.(s) = 7.(t), that is [s]. = [t]~. Thus R is a subset of
the identity relation on S..

As a corollary of this, (S~,a.) satisfies the ‘uniqueness half’ of the definition of fi-
nality: let (T,5) be any Ps(A X -)-coalgebra, and let f,g : (T,8) — (S.,a.) be two
homomorphisms. Since (S.,a.) is strongly extensional, and since the set {(f(t), g(t)) €
S.x S. |t € T}is a bisimulation on S. (it is equal to (G§)~* 0 G,), it follows that f = g.

By the finality of (P,¢), the following triangle commutes:

(8,0) 2 (Su,an)

I~
F

(P9,

where F and F. are the final semantics for S and S.. By the strong extensionality of
(S~,c.) and the fact that kernels of homomorphisms are bisimulations, it follows that
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F. is injective. This tells us that the final semantics F maps S onto a subset of P that
is isomorphic to S., and which therefore can be thought of as the canonical quotient of
S.

The above can be used for the construction of an easy proof of the folklore theorem that
for any two bisimilar transition systems (5,a) and (T, ), there exists a third transition
system (U, §) to which both of them reduce (see [Sif84] and [Bad93]). (Here a reduction
is a P¢(A x -)-homomorphism that is surjective; for instance, the quotient mapping ., is
a reduction.) The proof will be easy because it uses (the canonical quotient given by) the
final semantics.

(Note that in general it is not possible, given two bisimilar transition systems § and T,
to reduce S to T or vice versa; for a simple example consider the two transition systems
determined by

. b

§ = {s1,52,83}, and transitions {81 -2 82, 82 =2+ 51, 53 — 55 }
.. b

T = {t1,t2,t3}, and transitions {t; -2 ¢,, t, — ts, ts — t3, }.)

So consider two transition systems (§,2) and (T, ), and suppose (R,7) is a bisimu-
lation between them, with , : (R,y) = (S,) and , : (R,v) — (T, B) surjective. Let
Fs:(S,a) = (P,3) be the final semantics for § and Fr:(T,B8) — (P,%) be the final
semantics for T'. Let U be defined as

U = .7:5(3)
(= {Fs(s)e P|ses),
and let § be the restriction of % to U. The fact that F s is a homomorphism implies that §

is a function from U to Py(AxU). Hence (U,6) is a Ps(A4 x -)-coalgebra. By the finality
of (P,%), the following diagram commutes,

(R,7) —2—~ (T, B)
m™ * ]:T
(8,0) —— (P¥)

Because 7, and 7, are surjective, this implies that Fs(S) = Fr(T). This shows that
(S, @) and (T, B) both reduce to (U,8):

(8,0) 5 (0,6) -T2 (1,)

Another proof (which is essentially the one from [Sif84]) can be given without using
the fact that a final coalgebra exists. It consists of taking the push-out of m; and 7
the quotient of the disjoint union of S and T modulo the smallest equivalence relation
containing R (cf. [Bad93]).

Much of the above applies also to arbitrary functors F : C — C. Let (A,a) be
an F-coalgebra. A canonical quotient 7. : 4 — A_ can be defined as the (generalized)
coequalizer (if, as in Set, it exists) of all bisimulation projections on (4, @) (thus satisfying,
for all F-bisimulations ,,, : (R,7) = (4,@), meom = 7 o m2). Since the forgetful
functor from Cr to C creates colimits (such as coequalizers), A.. can be extended uniquely
to an F-coalgebra (A.,a.) such that r. : (A,@) = (Aw,a.) is an F-homomorphism.
Taking the kernel of this projection 7. yields, if F weakly preserves kernel pairs, an
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F-bisimulation on (4, a), which is by construction the greatest bisimulation. As above,
(A~,a.) is strongly extensional, and satisfies the ‘uniqueness half’ of the definition of

finality. (In fact, these two notions are equivalent for functors weakly preserving kernel
pairs.)

2.4 Final Coalgebras for Endofunctors on Sets***

In [Bar93), 2 method is given for computing final coalgebras for certain functors F : Set —
Set that are not w-continuous. It is repeated here (with a somewhat simpler proof) and
next applied to the functor Ps(A x -) : Set — Set. As we shall see, the construction
of a final coalgebra out of a weakly final one (the last step in the proof) can be nicely
characterized in terms of bisimulation.

First let us recall a classical theorem on the comstruction of final coalgebras. (It is
formulated as the dual of the so-called Basic Lemma from [SP82].) Let C be a category
with final object 1 and let F': C — C be a functor. Let A be the following chain,

1 : F(1) F() F*(1) F*()

(with ! the unique arrow into the final object 1 = {0}). Suppose that both u: D — A
and F(p): F(D) — F(A) are limiting cones. Then (D, §) is a final F-coalgebra, where
6 : D — F(D) is the mediating arrow given by the fact that u (minus its first arrow) is
also a cone from D to F(A).

For instance, let 4 be a given set and consider the functor A x - : Set — Set which
maps sets X to the Cartesian product 4 x X (and works on functions as one would
expect). Constructing the chain A as above yields for 4 x -

fo 5 fa

1 A?

where A™ consists of sequences of elements in A of length n, and f. takes a sequence of
length n +1 and yields a sequence of length n by removing its last element. The set

D ={(2a)n € [[A"| 2n € A and fo(zps1) = 2, }

A

(together with functions 7, : D — A™ mapping sequences to their n-th component) is a
limit for A, called the projective Limit. Since A X - is continuous, A x D is a limit for
A x A. Tt follows that there exists a function § : D — A x D such that (D, §) is a final L-
coalgebra—¢é maps a sequence (0, (a1,0), (a1,as,0), ...) to the pair (a1, (0, (as,0), ...)).
Clearly, D is (isomorphic to) the set of all infinite sequences over A. Similarly, taking L'
as the variant of L that takes sets X to 1 + (A x X), one obtains the collection of finite
and infinite sequences over A.

Another example—to be used below—is the functor R : Set — Set defined, for a set
X, by

R(X) = Y (AxX)

(= 1—-:(WA><X)—|—(A><X)2+...)_

The above construction yields a final R-coalgebra (T, 7), consisting of all finitely branch-
ing, labelled (over A), ordered (possibly infinitely deep) trees.

The method does not apply to the functor P;(A x -), which is not continuous, since
Py(-) is not. (See also the last remark of this subsection.) Still a final coalgebra exists by
the following theorem from [Bar93].
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Theorem 2.12 (/Bar93]) Let F and G be two functors from Set to Set. Letn: F — @
be a natural transformation: a family of functions {rx}—one for each set X —uwith, for
any function f : X - Y,

F(X) T, F(Y)
Tx * TY

G(X) —— G(Y
) 57 6)
Suppose wx is surjective, for any set X (the functor G is then called a quotient of F). If
F has a final F-coalgebra, then also G has a final G-coalgebra.

The proof consists of two steps: first it is shown that a final F-coalgebra (S,a) is a
weakly final G-coalgebra (meaning that from any other G-coalgebra there is at least one
homomorphism into (S, a)); secondly, this weakly final G-coalgebra is transformed into a
final one.

So let (S,a) be a final F'-coalgebra. Then (3,70 @) is a weakly final G-coalgebra.
For let (B, ) be an arbitrary G-coalgebra. Since Tp is surjective there exists (using the
axiom of choice) a right-inverse p:G(B) — F(B) with rp 0 p = lg(p). By the finality of
(S, @) there exists a homomorphism

B

pofl * a
F(B) 5y F(5)

Combining the above diagram with the one below,

Fgy 20, F(S)

B * s
G(B) oy ¢

yields that fis a G-homomorphism from (B,B) to (8, Tsoa) (noting that Tgo0p08 = B).

Secondly, there are standard techniques for constructing a final object from a weakly
final one, which apply to any category. (In [Bar93] two alternatives are mentioned: either
take the—generalized—coequalizer of all endomorphisms on the weakly final object, or
take the cointersection of all its quotients.) Alternatively (in this particular category of
coalgebras), the quotient construction from Section 2.3 can be applied: let (S~,(rs0a).)
be the quotient G-coalgebra of (S, ms0a) with respect to the greatest G-bisimulation. We
saw that it is strongly extensional, which was shown to imply (in fact, it is equivalent)
to the ‘uniqueness half’ of the definition of finality. Because (8,75 0 ) is weakly final
also (Sw,(7s 0 a).) is weakly final. Thus (S~y(7s 0 @).) is a final G-coalgebra, which
concludes the proof of the theorem.
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It can be used to show that the functor P;(4 x -) has a final coalgebra as follows.
Recall the definition of the (tree constructing functor) R above, and consider the family
of functions mx : R(X) — Ps(AxX), for any set X, defined by 7x(0) = @ and, for
((a1,21),- -+, (an, za)) € (4 x X),

mx({(a1,21),- .+ (an,20))) = {(a1,21),-. -, (an, z,)}.

This defines a surjective natural transformation 7 : B — P;(A4 x -). Because R has a
final coalgebra (7', 7), Theorem 2.12 yields the existence of a final P¢(A X -)-coalgebra
(P,1), which is obtained as the quotient of (T, ) with respect to the greatest Ps(A x -)-
bisimulation.

In conclusion, we give an explicit description of the elements in P (which are, by
construction, equivalence classes). Consider the chain

!

PrAx V()

! Pax @) 20 5 4y

Write By, for Ps(A4 x -)"(1) and =, for P#(4 x -)*(!), and note that B, contains all finitely
branching trees modulo bisimulation, of depth at most n; the function 7, : Bn,y1 — B,
maps a tree of depth = + 1 to one of depth n by removing all nodes at depth n + 1. As
before, this chain has a (projective) limit,

B = {(Xn)n € [[ Ba| Xn € B, and my(Xny1) = X }.

Note that it follows from the general construction of final coalgebras, described at the
beginning of this subsection, that if the functor Pf(A x -) were continuous—which it is
not—then B would be a final P¢(4 x -)-coalgebra. However, the final P;(A4 x -)-coalgebra
P constructed above can be seen to be (isomorphic to) a subset of B, as follows.

Let X € B, for some n > 0, and define for every k > 0 the number €x(X) as the
number of nodes in X up to depth % (a formal definition would be easy). A projective
sequence (X, ), in B is k-stable if the sequence

(Ck(-Xo), €k(X1), fk(X2)a .. )

becomes eventually constant. The intuition is that from that moment on, the elements
in the chain all have a fixed number of nodes up to depth k. Now one can prove the
following:

P = {(Xa)n € B | (Xa)n is k-stable for every k >0 }.

Note that those elements in B that are (representing) infinitely branching trees are not
in (the isomorphic image of) P, like the sequence (Y, ), given, for n > 0, by

Yo=XoU---UX,, with Xo =0 and X.y; = {(a,X,,)}.

(This example can be turned into a formal proof of the fact that Ps(A x -) is not contin-
uous.)

3 From Final Coalgebra to Initial Algebra Seman-
tics for Strong Bisimulation

Let (Z,7) be a ranked alphabet and let (7, ¢) be the initial ©*-algebra defined in Section
1: T is the set of all closed terms over £. Consider a finitely branching transition system
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(T, A,—) or, equivalently a Ps(A4 X -)-coalgebra (T,e) for T. It was shczwn in Section
2 that there exists, by the finality of the P(A x -)-coalgebra (P,%), a unique coalgebr
homomorphism F : (T,a) — (P,%):

T z P

a * P
—_— AxP),
P+(AxT) PHART) Ps(AxP)

called the final semantics for T, with for all s,t € T,
s ~r t if and only if F(s) = F(¢).

In this section, the set P will be turned into a X*-algebra structure (P,3) by con-
structing a function 8 : £*(P) — P from the transition system specification (see below)
for a. The initiality of (T, ¢) then gives the existence of a unique %*-homomorphism

I:(T,¢)— (P,B):

w1y ZE 5o(p)
¢ * I&}
T T P

(the initial semantics for T'), satisfying for all f € T and (t1,...,t.(5)) € (5,

I(f(try - te() = FUT(), -, I(tegr))-

(Recall that, for (p1,...,prs) € P, fe((p1,-- -, pr(s))) is—by definition—equal to
ﬂ(.f(Pl’ .. '}Fr(f)))‘)

Moreover, the construction will be such that 7 = F:

2(1) —= 3 5(p)
¢ * 8
T 1=7 P
« . "
PAAXT) 5 PolAXP)

Thus a compositional description of the final semantics is obtained. The initial semantics
is often called denotational, because of the emphasis on the assignment of denotations

I(s) to statements s. On the other hand, the final semantics F is often called operational,
since it is based directly on a transition system.
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The initial semantics, which will be canonically constructed here, turns out to be—
for certain specific signatures—the same as already existing denotational models. The
initial semantics of the example in Section 3.6 coincides with (a variant of) a denotational
model given in [BM88]. Similarly, the linear semantics of the next section is essentially the
denotational model from [HP79]. In both papers, operational and denotational semantics
are defined independently, and their equivalence is proved next using some fixed-point
argument (in metric and ordered spaces, respectively). Interestingly, such fixed-point
arguments are not needed here; the equality of 7 and F is a direct consequence of the
finality of their co-domain P.

3.1 Processes as Terms

The crux of the construction is the definition of a set Tp of mized terms, consisting of
the set of terms over the extended signature & + P: the original signature ¥ to which all
processes p € P have been added as constants (thus r(p) = 0). Formally, Tp is an initial
algebra of the functor (X + P)*, which is defined in the same way as &*.

This technique of extending the collection of syntactic entities (terms) with semantic
entities (processes), was introduced in the context of semantics for transition systems in
[Rut92]. It is well known in the world of models for the lambda calculus, where elements
d of a model are included into the collection of lambda terms as constants d.

Consider the signature & = {0,s,+}, with 0 a constant, s a unary and + a binary
function symbol. Examples of terms in T are s(s(0)) and s(0) + s(0 + s(0)); two mixed
terms in Tp are (with p € P) s(s(p)) and s(0) + s(p + s(0)).

It follows from the definition of the functors ¥* and (T + P)* that, for any set S,

(Z+P)(S)=3z*(S)+ P
Since Tp is a fixed point of (£ + P)*, this implies Tp = S*(Tp) + P, giving the existence

of two functions

2%(Tp)

Tp P.

L

which are defined straightforwardly. By the initiality of T', there exists a unique homo-
morphism Ip : (T, ¢) — (Tr, &),

(1) ZE2) 5 (7,
o o«
T IP Tp

The function Tp is merely the inclusion of the set T of terms into the set Tp of mixed
terms.

It is also possible to provide Tp with a suitable P;(A X -)-coalgebra structure. For
that, we shall have to consider the way in which the transition relation — in (T, A, —)
(equivalently, a in (T, «)) has been defined.
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3.2 Transition System Specifications

A common way of defining a transition relation — is to specify a collection of rules that
are used for proving that a triple (t,a,t') € T x A x T is in —. When the collection of
states of the transition system is well structured—here it is the set T’ of terms over the
signature ©—the form of these rules often reflects this structure. Such an approach is
therefore called structural operational semantics ([Plo81b]).

A transition systems specification for the signature T (with labels in the set A) is a
collection R of rules of the form

{t: 25 ti:iel}
t =t
where I is some set of indices, a and a; (for i € I) are in 4, and ¢, ¢’ and t;, t] (for i € I)
are in Ty, the set of terms over ¥ with variables in a given set X (see Section 1). The
expressions ¢; — ¢, are called premises and t = #'is called the conclusion of this rule.
If I is empty then the rule is called an axiom.

Such a transition system specification induces a transition relation - C T x A X T as
usual: — contains those triples that are provable from the rules in R. (See, for instance,
[Rut92] for a formal definition. We shall see an example below.)

For the rest of this section, it is assumed that the (transition relation of the) transition
system (T, A, —) is induced by a transition system specification R.

Now it is possible to define a transition system (Tp, 4, —p) for the set Tp of mixed
terms as follows. Let the specification Rp be defined as

Rp=RU{p - q](a,q) € %(p)}.

(Recall that 9 : P — Py(Ax P).) That is, all possible transitions in (P, 1 )—which is itself
a transition system—are added to R as axioms. Next let —p be the transition relation
induced by Rp. Then Tp can be turned into a Ps(A x -)-coalgebra

Tp
ap

Pf(AXTp)
by defining ap from —p in the familiar way: for ¢ € A and ¢,¢' € Tp,
(a,t') Eap(t) & t —p t'.

We should like (Tp, ap) to be such that it can be seen as a conservative extension of both
(T, @) and (P, ¢); that is,

T

T il Tp ‘ P

a *7 ap *2 P
PHAXT) Py (AxTp) =
s )Pf(AxIp) s(AxTe) Pl {AXP)
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As we shall see in Section 3.5, the commutativity of both squares above can be guaranteed
making some mild

assumptions (1 and 2)

on the form of the rules in R.

By finality of (P, 1)) there exists a unique homomorphism Fp : (Tp, ap) — (P,¢),

Te Fr P
ap * (
PHAXTp) —————
#(AxTp) P AXESS Ps(AxP)

Note that Fp o Ip = F, since both Fp o ITp and F are homomorphisms to the final

P;(A x -)-coalgebra (P,7); for the same reason, Fpo: = lp (with 1p is the identity
function on P).

3.3 Turning P into a ©*-Algebra

The next diagram collects the constructions we have described so far:

. 2%(Tp) (e

2(7) ———— 2 (Tp) —————— %*(P
(7) (@) = =)
¢ * K
T I Te - P

Fp
a *1 ap * 1
Pf(AXT) m)’ Pf(AXTP) m Pj(AXP)

Together with the fact that Fpo. = 1p, this diagram contains all the observations that
have been made above.

As the last step in the construction, we define the missing arrow in the diagram: let
B:X*(P) — P be given by
B=FporoZ(u).
The function B corresponds, as usual, to a family of functions
{7p: PV~ P|fes},
given, for f € T and (py,...,pr(s)) € P, by

F((pry--ape(e)) = B(f(pry-- s Prs))

Frporo T ()(fpry-- -2 Pr(s)
Fpow( f(L(Pl)! .- '7"(Pr(f))) )
= Fpok( f(pry---Pe(r)) )

= Fp( f(prs---,Pr(n) )-

Il
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Thus the value of fp((p1,...,Pr(s)}) is obtained by first embedding (pi,...,p.(s)) into the
collection of mixed terms T by an application of x o £*(¢). (Recall that ¢ is the embed-
ding of P into Tp.) Thus the mixed term f(p1,...,ps(s)) is obtained: It constitutes the
motivating example for the ‘processes as terms’ approach. Finally, the result is obtained
by the application of Fp, which is the final semantics for mixed terms.

Now the initiality of (T, ) gives the existence of the initial semantics that has been
announced at the beginning of this section:

(r) 28 5(p)

9 * &
———F— P
T I

3.4 Equality of the Initial Semantics 7 and the Final Semantics
}'

It still has to be proved that T and F are equal. Although this need not be true in
general, we shall see in a moment that the requirement that Ps(A x -)-bisimulation is a
congruence forms a sufficient condition for this equality.

A proof of T = F is as follows. It is sufficient to prove that the homomorphism
of P(A x -)-coalgebras Fp : (Tp,ap) — (P,1) is also a homomorphism of £*-algebras
Fp :(Tp,x) — (P,B); that is,

(F
£(z) Z2) 5o (p)
K *3 B
T P
P .7:}7 )

since it implies that T = Fp o Ip, both T and Fp o Zp being algebra homomorphisms
between the initial X*-algebra (T,¢) and (P,B). Since also Fp o Zp = F the desired
equality then follows,

I=.FPOIP=.7:.

So let us investigate how the above commutativity (*3) can be established. Consider
the following elementary lemma. (Recall that for a function m : X — ¥, the kernel K,
is defined as the set {(z,2') € X x X | m(z) = m(z')}.)

Lemma 3.1 Consider the following diagram of sets and functions:

f
A————8B
g
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If fog=1p and Ky C Ky then hogo f = h:

A f B
ho
b g
A
C

Proof: For all a € A, fogo f(a) = 1z 0 f(a) = f(a), thus (g o f(a),a) € Ky. By
assumption, this implies (g o f(a),a) € K, yielding the result. m

Clearly we want to apply this lemma to the following functions:

50 (Tp) *(P)
(Fp)
Tp—— P

Note that the first condition of Lemma 3.1, Z*(Fp) 0 £*(¢) = 1g.(p), is fulfilled since by
assumption 2 made above, Fp ot = 1p. The following lemma describes when the second
condition holds.

Lemma 3.2 Let (A,v) be a £*-algebra, B a set, and l: A — B a function:
{1
z(4) 2. e(p)

v

A——F——B
l

Then K; is a X*-congruence on (A4,v) if and only if Kg-1) C Kioy-

A proof of this lemma can be found in Section 3.7.

Because the kernel Kz of Fp is equal to the greatest bisimulation relation ~r, on
Tp (Theorem 2.6), the above lemma—and consequently Lemma 3.1—can be applied when
~r, is a congruence (on (Tp,«)). As we shall see in Section 3.5, one way of proving that
bisimilarity is a congruence is to make again an

assumption (3)

on the format of the rules in R. Thus, under this assumption, an application of Lemma
3.1 yields
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(1) 2P se(p)
£ *3 FporoX*(e)
T P.
P ]:P
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Summarizing the above, we have the following.

Theorem 3.3 Assume (R to be such) that

T
T F Tp : p
a *1 ap *2 v
PHAXT) ————> P+ AxTp) ———
$(AxT) PAxTs) #(AxTp) P (Ax0) Ps(AxP)

Let 8 = FporoXL*(t). Suppose that (R is such that ~1, is a congruence, by which)

oHF
£(Tp) Z1E2) o)
K *3 ﬁ
T
P 7> p
Then ST
. * Et
(1) 2T gy —EED o)
] * K *3 Jé]
T
T il Tp Fr P
« *q ap * ¢
PHAXT) e Py(AXTp) s :
! )Pf(AXIP) s(AxTe) Ps(AxFp) Pi(AxP);

in other words,

FpolIp:(T,a)— (P,y) is a homomorphism of P¢(A x -)-coalgebras, and

FpoIp:(T,¢)— (P,B) is a homomorphism of &*-algebras.

By initiality of (T,$) and findlity of (P,), it follows that
I= Fp OIP =F.
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3.5 Assumptions on the Format of R
Consider a rule R,

{t: =5 ti:ie I}
t = ¢
(Recall that terms in R are elements of Ty, the set of terms over the signature & with
variables from X.) The bound variables occurring in R are inductively defined as the ones
that either occur in ¢ or occur in a term t!, for some ¢ € I, for which ¢; only contains
bound variables. The rule R is called pure if all variables that occur in it are bound. A
transition system specification is called pure if it contains only pure rules. (Cf. [GV92]
and [Gla93].)
In [Rut92], the following fact is proved. If R is pure (called inductive there), then

T Ir Tp

23 *3 laP
PiHAXT) e AxT:
#(AxT) PAXTS) Ps(AxTp)

This takes care of assumption 1 above.
The following rule is not pure,

z = o

a— a
and illustrates what can go wrong when not all rules are pure: if £ is the singleton set
containing only the constant a, and if R consists of only the rule above, then a(a) is

empty, whereas ap(Zp(a)) = ap(a) is not, due to the presence of process(es) p € P with
(0,5} € B(z) (for some ' € P).

A rule R is an z-rule if the antecedent of the conclusion consists of a variable. Forbid-
ding z-rules in R implies that all rules that can be used in the derivation of transitions
(in Rp) for processes p € P (now seen as elements of Tp, formally «(p)), are contained in

{r = ql(a,q) € b(p)}
Since these specify precisely the transitions of the coalgebra (P,¢), it follows that

L

Tp P
ap *2 r/’
Pf(AXT_P) o Pf(AXP)

Pi(AxL)

Thus the absence of z-rules is sufficient to validate assumption 2.
In [GV92], a sufficient condition is given to ensure that the bisimilarity equivalence
induced by a specification R is a congruence.
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Definition 3.4 A rule R is in tyft-format if it has the following form

{t: 25 yizie I}
f(331,---,$1-(f)) — t’

and it is in tyzt-format if it is of the form

{t,‘ -—i) y,' N l (S I}
LA AL 4
z— t
where f € 3 the terms ¢ and ¢;, for ¢ € I are in Tx; and all of the variables in
{21, 2((5)}U{yi : © € I}, in the first case, and all of the variables in {z}U{y:: i € I},
in the second case, are pairwise distinct variables in X. The transition system specification
R is in ty ft/tyzt-format if all its rules are either in tyft or in tyat format. ]

Theorem 3.5 ([GV92]) If R is in pure tyft/tyzt-format then the bisimilarity relation
corresponding to the transition system induced by R is a congruence.

It is therefore sufficient for assumption 3 above to hold, that Rp is in pure tyft/tyzt-
format. Since the axioms we have added to R in the definition of Rp have the right
format, this amounts to requiring R itself to be in pure ty ft/tyzt-format.

Taking the conjunction of all conditions needed to make assumptions 1, 2 and 3 valid,
we find in summary that a sufficient condition for Theorem 3.3 to hold is that R is in pure
ty ft-format. Moreover the transition relation induced by R should be finitely branching.

Note, in conclusion, that in [GV92] it has been observed that a rule in pure tyzt-format
can always be translated into an equivalent set of rules in pure tyft-format, by making
for every f € ¥ a new copy of the rule, in which the variable « is replaced everywhere by
the term f(z1,...,z.(s)) (the variables z,,...,z.() should not yet occur in the old rule).

3.6 An Example

Consider the signature X5 = ActU {¢,6} U RecVar U {,+, ||}, consisting of a set Act of
atomic actions, two special symbols € and §, a set (X €)RecVar of recursion variables, and
three operators -, +, and ||. (The signature £ is called Basic Process Algebra with € and
8 (see, e.g., [GV92]), here extended with recursion and parallel composition.) All elements
are constants, but for the latter three, which are binary operators. The interpretation of
-, for concatenation, +, for nondeterministic choice, and ||, for parallel composition, is as
usual. Let A = ActU{ /}. The label ,/ is used to indicate termination. A transition
system specification Rp for Lp is defined as follows. It uses terms over the signature Tg
with variables in {z,z,y,y'}. For every a € A, there is an axiom

a
a— €
from ¢, one final transition is possible (there will be no transitions from §),

v

€ — 6.

For X € RecVar, there is the following rule:
$x —“-) Y

X5y

where sx is a given term in T, the set of terms over Tp, which can be seen as the body
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of the recursion variable X. As usual, these statements are required to be guarded in X
(excluding statements like (X - a) + b), such that the resulting transition system will be
finitely branching. (Taking (X -a) + b for sy, there would be infinitely many transitions
possible from X.)

Further there are the following rules,

a a a
z — g’ z — g T — z‘,a:,é\/ :c—\/~>z’y—'-1—+y'
a a
z+y— z' y+z-" g Ty —— 'y Ty — y
a ’ a B
z - z z -5 g

ey 2y yllz- yla

All of the above rules are in pure tyft-format.
Let < Tg,A,—> be the transition system induced by Rp. The final semantics F :
Tg — P satisfies (omitting here and below the isomorphism ), for s € T,

F(s)=A{(a, F(s")) € Ax P|s -2 s}
For the initial semantics T : Tg — P, we have, for a € A, s,t € Tg,

I(a) = ar={(a,Z(e))}
I(e) = er={(VI(8))}
I(6) = ép=0
I(s+1t) I(s) +p I(t)
I(s-t) = I(s) -p I(t)
I(s|lt) = I(s) llr Z(?)
I(X) = I(sx)

It follows from the definition of 8 that the function ||p, for instance, satisfies, for p,q € P,

Fe(pll q)

{{a, Fp(t)) eAx P| (p]l 9) —rt}
(a, Fp(p'l9)) € Ax P| p-Spp} U
(

(

pllrg

I

a,Fe(pll¢')) € Ax P| ¢ —pq}
a,p' lp 9 €EAXP| (a,p)€ep} U
{{a,p lp ¢) € Ax P (a,q') € g}

Thus ||p turns out to be the—in the world of denotational semantics for concurrency—
familiar parallel composition of processes. It was introduced first in {[BZ82] (in the context
of metric spaces), where it was defined directly on a collection of processes (very similar
to our P), without making use of transition systems.

{
{
{

3.7 A Proof of the Extension Lemma***

Lemma 3.2 can be proved as follows. Assume that (Kj,4) is a L*-congruence on (4,7).
The kernel Ks-(1y of the function £*(l) can be easily seen to satisfy

Kseqy = {(flar,-.-ra0(n)s flags-- 0 p) € 2°(4) x T7(4) |
f e ¥and (a;,a;) € K, fori= 1""7T(f) }
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Define the function A : Ky — I*(K)), for a pair
(Flar, - s anp), Flag, - s a0(p) € T(A) x T°(4),
by
A(f(at, - san(ny)s F(a1, - s an ) = Fl(ar,a1)s -5 (ar(s)s arip))) -

(This actually defines an isomorphism, showing that the functor ©* preserves kernels.)
Now the lemma follows from the commutativity of the the following diagram (where p;
and p, are the projections belonging to Kg-(1)):

K1) Kz Kz
P1 * A * P2
o o

Et(A) (Wl) Ea(Kl) (’"2) 2‘(14)
8l * § * Y
A K, A

T T2

l * )
B B

For the upper two squares, this can be easily checked; the two squares in the middle
commute by the definition of E*-congruence; and the rectangle below commutes by the
definition of kernel. Together this implies the commutativity of the outer rectangle:
loyopy=1lovo0py, thus Kz-y C Kios.

Conversely, suppose that the outer rectangle of the diagram above commutes. (The
upper two squares always commute.) It follows that

loyoX*(m)=1loyoL(m),

which shows that the function (y o £*(m;),v o £*(r;)) maps from T*(K;) to K, thus
turning K; into a X*-congruence on (4,%). a

4 From F to 7 in a General Setting

In this section a rather straightforward categorical abstraction of the above ‘from F to I’
construction is made. The resulting general scheme will be instantiated in Section 5 to
trace equivalence semantics. A dual construction, say ‘from 7 to F’, will also be described
in this section, although possible semantical applications are not addressed in this paper.

4.1 From Set to Arbitrary Categories

The category Set generalizes to an arbitrary category C. That is, objects and arrows
rather than sets and functions.
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The endo-functors X%, Py(Ax - ) : Set — Set generalize to arbitrary endo-functors
F,G:C —C.

The categories of algebras and coalgebras of endo-functors in Set have evident corre-
sponding notions in C. Thus C¥ and Cg in place of SetF and Setg, respectively.

For the definition of F-congruences and G-bisimulations one needs to abstract from
relations as subsets and consider relations as subobjects. That is, a relation R on two
objects A and B of C is a subobject of A x B. (See §V.7 in [Lan71] for the definition of
subobjects.) Notice that we need C to have finite products in order to define relations
this way. Also, recall that relations (as subobjects) are partially ordered (write R < R')
and that, if C has arbitrary pullbacks, the intersection of subobjects (hence of relations)
is well-defined. Under additional hypotheses, also the union is well-defined.

The kernel pair (see §III.4 in [Lan71]) K of an arbitrary arrow f : A — B in C
generalizes the notion of a kernel of a function; it is a subobject of 4 X A. Lemma 3.1
generalizes to arbitrary categories, by simply putting Ky < K} in place of Ky C Kj. The
same holds for the Extension Lemma 3.2 with an arbitrary endo-functor F in place of &*.

4.2 From F toZ

Let F'and G be endo-functors on a category C as described above and assume the existence
of the following. An initial F-algebra

¢: FT 5 T;
a final G-coalgebra
Y: P 5 GP;
and an initial (P + F)-algebra Tp = P + F1p

FTp
K
Tp P
L
By initiality, the following diagram commutes.
FI;
FT —2 . FTp
42 1&
T T;
r

Now, for two coalgebras a: T — GT and ap : Tp — GTp such that the diagram
Ir L

T Tp P
a ap P
GT GTp GP

GIp Gt
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commutes, one obtains the following commutative diagram.

Fu
FT Flp FTp FP
FFp
el K
L
T T T P
Fp
« ap PR
G G GP
GT ———— - GTlp —/——————————=
GIp i G

Theorem 4.1 Under the hypotheses of this section, the composition
FpolIp:T — P is both initial and final

if K, is an F-congruence on (Tp, k).

[u]

In the proof of the above theorem, P is turned into an F-algebra as before, by defining

B:FP—-PbypB=FpokoFu.

4.3 From T to F ***

The above construction can be (easily) dualized in order to obtain F from Z. The semantic
importance of this dual construction is left to be discussed elsewhere. Let us just make
the necessary dualizations explicit and mention that it might be possible to apply it for

deriving transition systems from denotational definitions.

In addition to an initial F-algebra and a final G-coalgebra, one now needs a final

(T x G)-coalgebra Pr & T x G'Pr, with projections

T+~——Pr
™

P
GPr

By finality, the following diagram commutes.

Pr r_p
pj ¢Il
GP. P

T GFr ¢

The two algebras needed are now of the form o : FP — P (say, the denotations) and

or : FPr — Pr, and such that the diagram
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F
FT T FPp FFr FP
o\ ar a
T A4

- Pr 7 P

commutes. Pasting these diagrams together one obtains the following commutative dia-

gram.
FT;
FT L Fpr Frz FP
Fr
ol or a
Ir
T P P
T T Fr
p L4t
GT 6% GP GP
Gr T GFr

The composition B = G7 o p o 7y is then the coalgebraic structure to be added to the
initial algebra T'.

5 From F to Z for Trace Equivalence

The derivation of 7 from F will be now studied for trace equivalence. The final arrow
F will be the linear final semantics given in [TJ93]. The category involved will be the
(monoidal closed) category of semi-lattices. The use of semi-lattices in trace equivalence
semantics dates back at least to [HP79]. The basic observation there is that the computa-
tional operations of non-deterministic choice and sequential composition are best modelled
as the join operation on a semi-lattice and as the tensor product between semi-lattices,
respectively.

Next, we shall:
o recall the definition of the category SL of semi-lattices;

e review the linear final semantics given in [TJ93] (for this we shall need right tensor
products);

o extend the endofunctor I* on sets to the category of semi-lattices (for this we shall
need tensor products) and show it has an initial algebra;

o apply the construction of Section 4.2 to the language in Section 3.6 and obtain a
compositional trace equivalence semantics for it.

=
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5.1 Semi-Lattices in Set

Semi-lattices are pairs (L,U), with Lasetand U: L X L — L a function satisfying the
following axioms. For all z,y,zin L,

cU(yuz) = (zUy)Uz
zlUy = yUz
Uz = =

The join U of a semi-lattice (L,L) induces the following order on it. For every z and y
in L,

z<y=zUy=y (2)

Semi-lattices form a category®, called SL, by taking as arrows f : (L,U) — (K, V) those
functions f : L — K such that, for every pair (z,y) in L x L,

flzUy) = f(=) V f(y)-

In the sequel, we shall simply write L for a semi-lattice, living its join implicit. When
we want to refer to the set underlying L, we shall write |L|. Notice that this operation
of ‘forgetting’ is functorial and we shall also use the symbol U to denote this forgetful
functor from SL to Set.

5.1.1 Free Semi-Lattices

Let P be the restriction of the functor % (defined in Section 2) to non-empty sets. Itisa
standard fact that P is left adjoint to the forgetful functor U : SL — Set. Formally, P is
an endofunctor on Set, but in the sequel we shall use the same symbol also for the functor
from Set to SL; for any set A, the join of two elements X and Y of PA (thus X and Y
are non-empty finite subsets of A) is simply their set-theoretic binary union. The unit of
the adjunction P 4 U maps every element of a set into the singleton set containing it:

{}a:A-P4A avr— {a}.

One way of stating (and proving) that P : Set — SL is left adjoint to U : SL — Set is as
follows.

Proposition 5.1 For every set A and semi-lattice L, and for every function f : A —|Ij
there ezists a unique linear function f' : PA — L such that f = flo {-}4. Pictorially:

Set SL
atapy P
S S
f ; .
¥ i
IL| L
Proof. Immediate from the linearity of f and the fact that every non-empty and finite
subset is a finite union of singleton sets. a

) !In general, one can define semi-lattices ‘internally’ in any category with binary products. For instance,
in [HP79), semi-lattices in the category of cpo’s and strict continuous functions are used.
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The semi-lattice P A is called the free semi-lattice on A.

An alternative description of the same adjunction is given by the following bijection.

——
. ' (3)
PA ! L
Since the functor P : Set — SL has a right adjoint it preserves colimits (see §V.5 in

[Lan71]). In particular it preserves coproducts and, since SL is cocomplete (see Corollary
5.3), one has, for all sets 4 and B,

PA+PB = P(A+ B). (4)

(Notice that this isomorphism holds in SL but not in Set.) The same holds for the initial
object:

0 = Po. (5)

Clearly, the 0 on the left hand side is in SL, while the one on the right hand side is in
Set. Thus the empty semi-lattice is the initial object in SL. The dual fact also holds: the
one-element semi-lattice is the final object in SL and

1 = P1. (6)

5.1.2 Completeness and Co-Completeness***

Since the forgetful functor U : Set — SL is monadic, an alternative presentation of SL
is as the category SetT of algebras of the monad T = (P,{-},U) given by the above
adjunction (see §VI.2 in [Lan71]):

Proposition 5.2 SL = SetT
Then the following corollary is immediate (see Proposition 9.3.4 in [BW85]).
Corollary 5.3 The category SL is (small-) cocomplete.

By the completeness of Set and the fact that the functor U : SL — Set creates limits (see
§VI.2 in {Lan71]), one has also the dual fact:

Corollary 5.4 The category SL is (small-) complete.

5.2 Linear Final Semantics

In this section we shall review the final semantics for trace equivalence — called linear final
semantics — given in [TJ93].

Traces (both finite and infinite) on an alphabet of actions A can be categorically
described as elements of the (unique up to isomorphism) final coalgebra of the following
endofunctor on Set (cf. Section 2.4),

1+ Ax - : Set — Set.

In trace equivalence semantics, the meaning of a program is usually given as a set of
traces. By using a suitable endofunctor on semi-lattices instead, namely

1+A4® - :SL— SL, (7)
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we shall be able to give a final coalgebra description of those sets of traces of interest for
semantics. The functor ®" appearing in (7) is of type

®" : Setx SL — SL (8)

and is obtained by precomposing the first component of the tensor product of semi-
lattices? with the free constructor P on semi-lattices. One way to describe this ‘right’
tensor product @', independently from the ‘full’ tensor product ®, is as ‘classifying’ right-
linear functions in the following sense. Given a set A and two semi-lattices L and K, a
right-linear function f : Ax |L|—|K] is a function which is linear in the right component.
That is, for every ain 4 and all [,!'in L,

fla, 10l = fla, 1)U f(a,l).

A semi-lattice, say A ®" L, classifies right-linear functions if there exists a right-linear
function

o : Ax|I|—|A®"I|

which is universal in the sense that, for every right-linear function f : Ax |L|—|K], there
exists a unique linear function f! such that the following diagram commutes.

r

Ax|I)| |[AQ®"L| AQL
S S
N ' ©)
4 ]
K] K
(Right-Linear) (Linear)

The existence of such a universal right-linear function is shown in Section 5.5 where it is
also shown that it gives rise to a functor of type as in (8). (The idea of a right tensor is
already present in [Hen93], but here we let A be an object from Set rather than from SL.)

An important property of this right tensor is the following. For every two sets A and
B,

A®PB = P(A x B). (10)

(For its proof, see Corollary 5.13.)

5.2.1 A Linear Final Coalgebra

Theorem 5.5 There exists a final coalgebrap : P = 1+A Q" P of the endofunctor
1+AQ® - :SL— SL.

Moreover, P is the limit of the following w°P-chain.

! 1+A@"!

1 1+40" 1+ 14 A@ (14487 1)

(11)

*The use of tensor products in trace equivalence semantics dates back at least to [HP79).
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Proof. Let p be the universal cone given by the above limit and put
v=1+AQ"p.
This v is a cone from 1+A®"- to the diagram in (11), which gives a unique linear function

£:1+AQ"P— P

such that v = g o {. The claim is that there exists a linear function ¥y : P - 1 +AQ®" P
such that ¢ = £7!. In order to see this, let us first have a more concrete understanding

of the limit P. Put, for every p in P,

pln] = pa(p)- (12)
Next, let F,, and f, denote the n-th object and the n-th arrow in the above diagram,
respectively. By (10), (6) and (4), one has

Fr = P([Licn 4%) (13)

By the standard construction of limits by products and equalizers (see §V.2 in [Lan71)),
the above limit P can be concretely described as follows.

1PI= (o € [T P(lica 4°) | 7ale) = falmmia(e))} (14)

n<w
The join of P is inherited from the product [],..., ﬁ(]jks" A¥), on which the join is defined

pointwise.

Firstly, notice that, for every p in P and every a in A, if a belongs to p[l], then, for
every n > 1, there exists a w in Fj,_, such that < a,w > is in p[n].® One can then define
a partial function

et P—=P (15)
as follows. Regard an infinite tuple as function from the natural numbers; then,

_f n—{w|<a,w>ep[n]} ifac€pl]
Pa = undefined otherwise

Secondly, notice that, if 0 belongs to p|1], then it belongs to every p[n].
We can now define, for every p in P,

0 Uaeppyaepa if 0 € p[1]
¥(p) = { U el :
aep(1] 2®Pa otherwise

One can then check that 1 is linear and that it is the inverse of £. 0

5.2.2 Linear Transition Systems

In Section 2, a one-to-one correspondence is given between finitely branching labelled
transition systems (over A) and coalgebras of the endo-functor B{A X -) on Set. The
existence of a final coalgebra for that functor yields a ‘branching’ final semantics for any
transition system. Here it is shown that something similar ~ although of a ‘linear’ rather

3Actually, to be formal, we should write inr(a) and inr(a,w), because the pli]’s are subsets of the
coproduct 1+ (A4 4+ ...+ A%) with injections inl: 1 — 1+ (A + ...+ A%) and inr: (A4 ...+ 4') —
14+ (A + ...+ A*). But this would make the notation too cumbersome in the sequel.
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than of a branching nature — can be done for the endo-functor 1 + A ®" - on SL when
applied to free semi-lattices.
Firstly, notice that, by (10), (6), and (4),

1+A®P- = P(1+4x-) (16)
Secondly, coalgebras in Set of the form
5 — P(1+AxS)

can be seen as (finitely branching) labelled transition systems with a distinguished ter-
mination state, say a state 0 not belonging to 5. Indeed, one can write these transition

systems as tuples {S,A,—, |}, where the last symbol denotes the following predicate
ranging over S: for every sin S,

s | holds <= s can do a transition into the termination state 0

Thirdly, using the bijection (3) given by the adjunction P 4U, one obtains the isomor-

phism a

S

P(1+AxS)

) o R (1n
PS 1+4AQ"PS

Therefore, (1+A®"- )-coalgebras of free semi-lattices are just transition systems transposed

across the adjunction and one can infer a linear final semantics for them as follows.

Linear Final Semantics:

S~ik»ﬁ3 PS 7 P
of of Ph (18)
e 3 ' |
v \]
P(1+AxS 144®PS ————— - 1+AR® P
(1+4x%5) +®P1+A®,7__+®

One can regard the coalgebra (PS5, of) as a free linear transition system (where by a
transition system we intend now a finitely branching one with a suitable distinguished
‘termination state’) as follows. For all finite and non-empty subsets S;, S of 5,

S1 -85, &= VeSS, Ise S, s—2u¢. Sile 3s€85 s (19)

This definition follows from the more general case in which a transition relation and a

termination predicate are derived from an arbitrary coalgebra f: L — 1 + A ®" L: for
every ain A, and al [,{'in L,

-1 < asl' <B() Il <= 05801 (20)
In the sequel, when applying F to an element, we shall write
[-] in place of F(-). (notational convention)
Diagram (18) implies that, up to isomorphism,
5] = { 0UL, o, a0'[S:] i 5 |

Us, 2, ae"[S2] otherwise
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In particular, writing s for the singleton state {s} in (PS5, A,—,|), one can derive
from (19)

s 5 &= Vs'eS§ s (22)

and, exploiting the linearity of the semantic function, one can derive

_[0ul,e a0l sl _
b= { U,=, ee[s] otherwise (linear)
Notice that in branching semantics one has
_[{0}uu,s, {<a,ls]>} ifs| .
Lo} = { U,s, {<a[s] >} otherwise (branching)

The difference between the two semantics becomes apparent when a further iteration step
is considered.

Let us come back to the correspondence, given in (20), between arbitrary coalgebras
of the functor 1 +A ®" - and (linear) transition systems; it will be used later for deriving
T from F in the linear setting.

Firstly, to any coalgebra 8 : L — 1+ A4 ® L one can associate the following final
‘semantics’. For every [ in L,

[ = { 0U s, ae[l] if2]

Uy ae['] otherwise

Secondly, notice that the correspondence in (20) shows how to derive a linear transition
system from an arbitrary coalgebra of the functor 1 +4 ®"- but not the converse; namely,
it is not clear to which transition systems (L, A, —, |) the correspondence in (20) can be
applied in order to obtain a linear function 8: L — 1+A®"L. Certainly, in order for 8 to
be linear, the following three conditions should hold. Their interest lies in particular in the
fact that, as it will later be shown, they can be regarded as transition system specification

rules, and used to derive a linear transition system from an ordinary specification.
For all l;,13,1,15in L,

lli)lll, lz—a—)l’z = llulz—?—#liullz
L0, LA = Lul->l (25)
Ll = LUl |

5.3 X-Algebras in SL

The description of the endofunctor £* on Set associated to a signature ¥ can easily be
made categorical and then instantiated to SL. Let (£,r) be a ranked alphabet and recall
that in Set

g [y (26)
fex
The above functor is described in terms of coproducts and Cartesian products, but, from
semantical consideration (namely, the bilinearity of the operators — but see also the con-
struction in [Plo81a] of the initial T-algebra in the category of cpo’s with strict continuous
functions) it turns out that in general the tensor product instead of the Cartesian product
has to be used. (In Set Cartesian and tensor product coincide - see below.)
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The tensor product of two semi-lattices is a functor of the form
® : SLxSL— SL

which ‘classifies’ bilinear functions. Bilinear functions are functions f :[Li| x |L,|—| I
which are linear in each of the two components separately. That is, for all I;,1{ in L; and
all I, 15 in L,

FUl,h) = fL,L) U fInh)  flubuly) = f(l,l)U f(h,b) (27)
Equivalently,
FL Ul ul) = fh,l) U F(l, L) U f(, B) U f(I, 1) (28)

The tensor product I, ® L, of two semi-lattices L; and L, can be defined in terms of the
existence of a bilinear function e :|L| x |K|—|L ® K| which is universal among all bilinear
functions. That is, for every bilinear function f :|L1| X |Lz|—|L| there exists a unique
linear function f* such that the following diagram commutes.

|Lq] % | Lo i |L1 ® L, Li®L,
f 1
f | .
¥ v (29)
IZ| L
(Bi-Linear) (Linear)

(For more details, see Section 5.5.)
The tensor product of two free semi-lattices has the following useful property. For
every two sets 4 and B,

PA ® PB = P(4xB). (30)

(For the proof of this fact see Proposition 5.12.)
One can now define powers

(-)*:SL— SL
of the tensor product inductively as follows. For every natural number n,

() =1
(O = 1w o)

Here 15, stands for the identity functor, while 1 is the final object (which is also the
neutral object for the tensor).

0

Using this definition of powers, the expression in (26) can be taken as a definition for
an endofunctor £* : SL — SL. For example, if ¥ is a signature consisting of one constant,
one unary and one binary function symbol, then, for every semi-lattice L,

S(L)=1+L+LQL.
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5.3.1 Initial X*-Algebras in SL

Proposition 5.6 The endofunctor £* : SL — SL is cocontinuous, (i.e., il preserves
colimits). The same holds for the endofunctor L + £* : SL — SL, for any semi-lattice L.

Proof. The endofunctor (L+) £* is defined in terms of composition of coproducts, tensor
products, (constant) and identity functors. The latter are trivially cocontinuous. Coprod-
ucts are colimits and colimits commute with each other; therefore they are cocontinuous.
The same hold for tensor products, since, as shown in Section 5.5, they are coequalizers.
Finally, the composition of cocontinuous functors is always cocontinuous. o

Corollary 5.7 The initial algebra of the endofunctor E° ezists and is the colimit of the
following w-chain.

0 ___;_. =*(0) g(_'_). o*(T*(0)) E(E_'L@ cen (31)

Similarly, the initial algebra of the endofunctor P+XI* is the colimit of

! P+3+())

0 P+3%(0)

PAS(P+T*(0)) — -
]

In the sequel we shall use £* both for the endofunctor in Set and for that in SL. The
context should help in avoiding ambiguities. For instance, in the next proposition, the £*
on the left hand side of the isomorphism is on SL while the one on the right is on Set.
Instead, the two occurrences of P both refer to the functor from Set to SL.

Proposition 5.8 0P = Poxt.
Proof.
oP = [Py
fex
= ]] P(-)H) (by Proposition 5.12)
fez
= P(LLEY) (by (4)
feL
~ Poy*

m}

The above proposition can be used to give a concrete representation of the initial

L*-algebra in SL. (A X*-algebra in SL is a pair consisting of a semi-lattice L and a linear
function a : £*L — L.)

Proposition 5.9 Let (T, ¢) be the initial £*-algebra in Set (see Section 1.1.2). Then the
initial £*-algebra in SL is simply (PT,Pg).

Proof. By the cocompleteness of Set and the fact that the forgetful functor U : SL — Set
creates filtered colimits (see §1X.1 in [LanT71]), Corollary 5.7 applies to SL. By (5) (for
the first element) and Proposition 5.8 (for the iterated steps), Diagram (31) in SL can be
obtained by applying P to the corresponding diagram in Set. By applying the fact that
P - as aleft adjoint — preserves colimits, one obtains the desired result. o
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5.4 From F to 7 in Linear Semantics

The existence of a final coalgebra P = 1+ A4 ®" P, and initial algebras *PT = PT
and P+ 2Ty = Tp, allows us to apply the formal construction described in Section 4
to the endofunctors &* and 1+ A4 ® - on SL. From the form of the initial £*-algebra
(see Propositions 5.9 and 5.8) and from the correspondence (depicted in (18)) between
transition systems (in Set) and free linear ones (in SL), one has the following.

Set SL
T PET = $*PT
8 P4
(32)
7Yy PT
o ot
a ' !
¥ +
P(1+AxT) 1+A4 & PT
If one can find a coalgebra
a;, Tp = 1+AQ™Tp
such that the diagram
R s
PT ? T ‘ 2
of of P|l (33)
o 1+AQ"
144 PT —————~ 14+AQ@ Tp —n"r ¥
Ao T +AQ Ip 1+AQ®" P
commutes, then also the following diagram - instance of (1) - commutes.
. R . z*
PET = 2*PT —-E——Ii——> 2*Tp - P
2 Fp
'ﬁqbl K
, I L
PT T P (34)
Fp
ot ob Yl
. 1+A®:
1+A@ Pl ——————— 144 Q@ Tp ———— T
BT A P1+A®"Fp1+A®P

Theorem 4.1 gives then that
FpolIp : PT — P is both initial and final

if K7, is a X*-congruence on (P,), for 8 = Fp o k0 T*s.
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Let us now see how to derive o from o! in case a is defined by means of a transition
system specification; some care is needed because of the semi-lattice structure which
makes things more involved than in the branching case from Section 3.

Notice that, in general, transition system specifications do not include rules for U.
When dealing with free semi-lattices like PT, this is not a problem, because one can use
the by now standard transposition across the adjunction and work with T, where no join
appears. But in the above diagram, the coalgebra ok : Tp — 1 + 4 @ Tp involves the
semi-lattice Tp (containing ‘processes as terms’) which is not free. A solution would be to
add to every transition system specifications the conditions given in (25) as rules; that is:

r-2 oz oy oy 2 2 oy z |

sy = z'Uy’ zly 2 zf zUy |

(35)

This suffices for reducing transitions of terms of the form a LI b to transitions of simpler
terms a and b. But problems arise again when dealing with terms in which joins appear
after a function symbol, like, e.g., (a Ubd) || (cU d). The solution is suggested by the way
the free algebra of terms is constructed, namely by means of tensor products: the function
symbols have to be treated bilinearly. Thus, for instance, one can reduce the above term
to(a ]l )Uall )L U] d).

Given a transition system specification R, after adding to it the rules in (35) and
having treated function symbols as bilinear, one still needs to include the ‘transitions’
of P 5 1 +A®" P as axioms; by the correspondence in (20) one derives the following.
Recall that, for every p in P, the expressions p[l] and p, are defined in (12) and (15),
respectively. For every p in P and every ae”p’ < 4(p) (i.e., p' < p,), add the axiom

p—7;
for every p such that 0 < (p) (i.e., 0 € p[1]), add
pl-

As in the branching case, if R does not have z-rules, the commutativity of the right
square of the diagram in (33) is ensured, because, as previously mentioned, the rules in
(35) are already implied by transition systems stemming from coalgebras. As for the
two remaining assumptions for our theory to hold, namely the commutativity of the left
square of the diagram in (33) and the ‘congruence condition’, we do leave them to be
discussed elsewhere and turn to a specific example — the transition system specification
R p for the language in Section 3.6. For that example the remaining assumptions can be
verified ‘by hand’.

Notice that a further difference from the branching case is here the fact that we now
deal with transition systems with a distinguished termination state. In the transition

system induced by Rp, the state § plays such role and transitions of the form z s
simply correspond to z |. Having settled this last problem, we can now derive the
following compositional semantics.

er = [€]
Ve
la]
ae’0

ppq = [p-q]

ap

I
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qu Uaép[l] ae’ {[Pa . q] if p l
Uaepiy a¢” e - ql otherwise

Finally, consider, for simplicity, the remaining p +p g and p ||p ¢ only in the case in
which neither p | nor g | holds:

p+rg = [ptdl
= Uaeppy ae’[p] U Uaeqry ae’[ga]
plq
Ipll
Ueepiy ae’[ps || q] U Ueeqp) ae’[p || ¢a]

Notice that the language and the transition system specification considered here is very
close to the one given in [HP79]. One can then compare the compositional semantics
in that paper with the above ‘automatically derived’ semantics and find that, mutatis
mutandis, they are the same.

?lrg

5.5 Tensor Products in SL ***

In this section tensor and right tensor products are seen first as left adjoints of suitable
hom-functors and then as quotients — more precisely, as coequalizers. The former presen-
tation has the advantage of being easily applied and understood also in other categories.
The latter is useful for proving the existence of such products.

5.5.1 Tensor Products as Left Adjoints

One way to define tensor products is to use closed categories and adjunctions. Informally
(for a formal definition see [EK66]), a category C is closed if its hom-sets are themselves
objects of the category. That is, for every two objects C; and C in C, the set C(C, Cs)
of arrows in C can be regarded as an object of C. This is always the case for categories of
algebras, like SL. (See, e.g., [Jac92].)

For every object C in a closed category C, one has an endofunctor C(C, - ) : SL — SL.
If this functor has a left adjoint, one can define a tensor product as follows:

Ce-4cC,-)

By a standard property of adjunctions with parameters ([Lan71]) this gives rise to a
functor ® : C xC — C.

Clearly, the category Set is closed (hom-sets are sets!) and it is well known that, for
every set A, A x - : Set — Set is left adjoint to the hom-functor. Thus in Set tensor and
Cartesian products coincide.

A familiar example of a tensor product in semantics is the smash product between
cpo’s. Notice that the space of strict continuous functions between two cpo’s is a cpo
itself, which shows that the category CPO, is closed. It is possible to prove that, for
every cpo C, the smash product C ® - is the left adjoint to CPO,(C, - ).

Also SL is a closed category. For every two semi-lattices I and K, the hom-set
SL(K,L) inherits a semi-lattice structure as follows. For all linear functions f,g in
SL(K,L), and for every k in K, one can put

(Fug)k) = f(k)ug(k), (36)
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where the join on the left hand side is the join of L. Thus the join in SL(K, L) is defined
pointwise and, for every semi-lattice K, SL(K, - ) is an endofunctor on SL.

For proving the existence of this tensor in SL one can use Freyd’s Adjoint Punctor
Theorem (§V.6 in [Lan71]) as well as a concrete quotient construction (see Section 5.5).
What the adjunction then gives is the following bijection.

L® L, L
Ly — SI(Ls, L)

Summarizing the above, we have the following.

Definition 5.10 For every L in SL,
L® -:5L—SL

is defined as the (unique up to isomorphism) left adjoint of SL(L, - ) : SL — SL. By
a standard property of adjoints with parameters (§IV.7 in [Lan71]), this gives rise to a
bifunctor

® : SLxSL — SL

which is called the tensor product between semi-lattices.

One can check that (SL, ®,1) forms a monoidal closed category. In particular,

Lel=1®L =1L.

The above definition can be easily varied to obtain a right tensor product classifying
only ‘right-linear’ functions, instead of bilinear (i.e., right- and left-linear) ones. The
hom-functor

SetSL( -y - ) :SetopXSL — SL

to be used is defined as follows. Given a set A and a semi-lattice L, Sets (A, L) is the
semni-lattice having as elements all functions — thus not only the linear ones! — from the set
A to the set underlying L, and as join the pointwise one as in (36). This is well defined,
since in (36) only the join of the target L is used.

Definition 5.11 For every A in Set,

A® - :S5L— SL
is defined as the left adjoint of Setsz(A, - ) : SL — SL. This gives rise to a bifunctor

®" : SetxSL — SL
which is called the right tensor product between sets and semi-lattices.
The above adjunction is a natural isomorphism of the form

A®L K
L Setsr(A, K)

An alternative way of understanding the right tensor product is in terms of the ‘full’
tensor product. Indeed, it can be obtained by simply precomposing the left component
of the tensor product with the free constructor on semi-lattices:
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Set Set x SL
Bl Pxly &
SL SL x SL SL

5.5.2 Tensor Products of Free Semi-Lattices
The tensor product of two free semi-lattices has the following useful property.
Proposition 5.12 For every two sets A and B,

PA ® PB = P(Ax B).

Proof. By uniqueness (up to isomorphism) of adjoints, it is enough to prove that, for
every semi-lattice L, there exists a natural isomorphism between linear functions from

P(A x B) to L and linear functions from PB to SL(PA, L):

L
SL(PA,L)

P(A x B)
PB

Because of the adjunction P U, this amounts to the following natural isomorphism
between functions in Set (thus not necessarily linear):

Ax B 1Z]
B ISL(PA, L)

A second application of the above argument yields:
Ax B IZ|
B —— Set(A,|L])
The latter immediately follows from the adjunction A x --1Set(4, -). O
Notice that since in Set x coincides with ® one could rephrase the above proposition

by saying that P (as a monad) preserves tensors. (Cf. [Jac92] - also for a more abstract
proof of the above proposition.)

Corollary 5.13 For every two sets A and B,
A® PB = P(A x B).

Proof. Immediate from the above proposition and the fact that the right tensor product
is obtained by precomposing the first component of the tensor product with P. m]

5.5.3 Tensor Products as Quotients

Next, we give a direct construction of tensor products based on quotients (more precisely,
coequalizers). (Cf. [Lin66] and [LM92].)

Let L and K be two semi-lattices and let [,I’ and k, k' be generic elements of L and
K, respectively. Let the same symbol L denote the join of both L and K. In order to
obtain I ® K from L x K, one needs to put
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<UL kUK >=<lk>U<LE>U<lE>U<l K> (yes)
but not
<UL kUK S=<Lk>uU<lk> (no)

as it is the case with the join in the Cartesian product. This can be neatly expressed by
means of coequalizers as follows.
Consider the two functions

6 .
L x |K|* ?P(ILI x |K]) (39)

defined as follows:

b @ <LU kK >— {<lLE><Lk> <l k> <k >}
T o <LU kK >— {< Ul kUK >}

Take now the coequalizer of their transposes 6! and 7 across the adjunction P 4 U:

]
PILP x |K[?) 0:::11 P(L| x |K|) 4. Coequalizer(6*,7¥) (40)

This coequalizer gives the desired tensor product:
Proposition 5.14 For 6 and 1 as in (40),
L ® K = Coequalizer(§*, ")

Moreover, by transposing the universal arrow given by the coequalizer (in the other di-
rection than in (8)), one obtains the universal bilinear function described in (29). More
formally, let »* be the inverse of the above -¥. Then

e=¢ :|L|x K|-L®K]|.
m]
A quotient construction is possible also for right tensor products. The following few
straightforward modifications of the above construction are needed.

Let A be a set and L a semi-lattice. Let a be an element of 4 and [,!’ elements of L.
The definition of (39) becomes

9,7 : Ax|LP*— P(Ax |L|)
6 : <a,,l'>— {<a,l><al >}
7 <a,Ll'>— {<aqlUl>}

and, similarly, Diagram (40) becomes

. o
P(Ax|LE) == P(Ax |L]) 2. Coequalizer(é, ) (a1)

T
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Proposition 5.15 For & and 7V as in (41),
A® L = Coequalizer(8%, 1)

Moreover,

8" =

¢ : Ax|L|—|A® L
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